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1 Convergence of Permutations

1.1 Subpermutations and permutation density

Definition 1.1. A permutation of order k is a bijection [k] → [k], where [k] denotes
the set {1, . . . , k}.

A permutation gives rise to two linear orders: the order of the actual numbers and the
order we write the numbers in. We can express these two in a grid.

Example 1.1. The permutation 2 4 1 3 5 can be expressed with the grid

Definition 1.2. A subpermutation (or a pattern) can be constructed by taking a subset
of the numbers in the permutation and keeping them in order.

Example 1.2. Picking the 2nd, 3rd, and 5th numbers of the permutation 2 4 1 3 5
gives the permutation 2 1 3 .

Example 1.3. Picking the 1st, 2nd, and 4th numbers of the permutation 2 4 1 3 5
gives the permutation 1 3 2 .

Denote |π| as the order of the permutation π.
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Definition 1.3. The density of a permutation π in a permutation σ is

d(π, ρ) = prob |π| randomly chosen elements of σ yield π as a subpermutation.

We define d(π, σ) = 0 when |π| > |σ|.

Example 1.4.

d( 1 2 , 2 4 1 3 5 ) =
7

10
.

Example 1.5.

d( 1 2 3 , 2 4 1 3 5 ) =
3

10
.

Definition 1.4. A sequence (πn)n∈N of permutations is convergent if |πn| → ∞ and for
every permutation σ, d(σ, πn) converges.

1.2 Reducing convergence of permutations to 4-point permutation em-
beddings

We would like to prove the following theorem, but we will prove 2 weaker versions before
proving the full theorem.

Theorem 1.1. If (πn)n∈N is a sequence of permutations with |πn| → ∞ such that for all 4-
point permutation σ, d(σ, πn) → 1

24 , then (πn)n∈N is convergent, and for every permutation
τ , d(τ, πn) → 1

|τ |! .

Can the 4 be replaced with another number? This number is “optimal” in the sense
that it cannot be replaced with 3 and have the theorem still hold true. Suppose we had all
the densities of 3-point permutations in a permutation π:

d( 1 2 3 , π), d( 1 3 2 , π), d( 2 1 3 , π),

d( 2 3 1 , π), d( 3 1 2 , π), d( 3 2 1 , π).

Can we determine the value of d( 1 2 , π)?
Yes. We can do this by picking 3 elements and then picking 2 elements from those 3:

d( 1 2 , π) =
3

3
d( 1 2 3 , π) +

2

3
d( 1 3 2 , π) +

2

3
d( 2 1 3 , π)

+
1

3
d( 2 3 1 , π) +

1

3
d( 3 1 2 , π).

This generalizes to the situation where |σ| ≤ k ≤ |π|:

d(σ, π) =
∑
τ∈Sk

d(σ, τ)d(τ, π).

Remark 1.1. This result was proven for the number 5 by Hoeffding in 1948. He didn’t
use combinatorial limits to prove this theorem, however.
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1.3 Permutons

We’ve mentioned convergence of permutations, but what is the limit object?

Definition 1.5. A permuton µ is a probability measure on Borel sets on [0, 1]2 that has
uniform marginals.

Example 1.6. Here is an example of a permuton which is not the uniform distribution on
the square.

Definition 1.6. A µ-random permutation of order k is given by sampling k-points iid
according to µ and interpreting it as a permutation in the reverse of the grid construction.

Example 1.7. The following sample with k = 5 gives the permutation 1 2 5 3 4 .

We define d(σ, µ) to be the probability that a µ-random permutation of order |σ| is σ.

Proposition 1.1. If (πn)n is a convergent sequence of permutations, then there exists a
unique permuton µ such that for every permutation σ, limn→∞ d(σ, πn) = d(σ, µ).
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Here, µ is called the limit of the sequence (πn)n∈N. We will later prove the following.

Proposition 1.2. Let µ be a permuton, and let πn be a µ-random permutation of order
n. Then with probability one, (πn)n∈N is convergent, and µ is its limit.

Proof of Proposition 1.1. Uniqueness is left as an exercise, but we will prove existence. Fix
a convergent sequence (πn)n∈N of permutations, and for each n, look at the largest k such
that |πn| ≥ 22k. Define π′

n = πn restricted to its first |πn| − (|πn| mod 2k) elements. The
point is to throw away a few elements and have 2k divide |π′

n|. This does not lose the
property of |π′

n| → ∞, and for every permutation σ, we claim that

lim
n→∞

d(σ, πn) = lim
n→∞

d(σ, π′
n).

This is because for every k, there exists an nk such that for all n ≥ n0, 2
k divides |π′

n|.
From that point on, |πn|−|π′

n|
|πn| ≤ 2−k. Also, because hitting one of the “removed” elements

when sampling elements is small, we have

|d(σ, πn)− d(σ, π′
n)| ≤ |σ| · 2−k · 2.

Thus, without loss of generality, we may assume that for every k, there exists an nk such
that for all n ≥ nk, 2

k divides |πn|. We assume that (πn)n∈N has this property and drop
the prime notation.

For every k, define a matrix Ak
n ∈ [0, 1]2

k×2k for every n ≥ nk as

[Ak
n]i,j :=

|{x : j−1
2k

|πn| < x ≤ j
2k
|πn| and i−1

2k
|πn| < x ≤ i

2k
|πn|}|

|πn|
.

That is, we count the density of points landing in each box, indexing from left to right and
bottom to top as in the following picture:

These matrices actually converge coordinate-wise. But rather than proving that, we will
find a subsequence (πmi)i∈N such that for every k, Ak

mi
converges. Let Ak be the limit
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matrix. Then A1 is a [0, 1]2×2 matrix, A2 ∈ [0, 1]4×4, and A1
1,1 = A2

1,1 +A2
1,2 +A2

2,1 +A2
2,2.

That is, we are subdividing each box into 4 smaller boxes and splitting up the density as
we do so. Now, we would like to use Carathéodory’s extension theorem:

Theorem 1.2. Let A be an algebra of subsets of a set, i.e. it is closed under complements,
finite unions, finite intersections, and ∅ ∈ A . Suppose we have a mapping µ0 : A → R+

0

such that if (Ai)i∈N is an infinite sequence of disjoint subsets contained in A such that⋃∞
i=1Ai ∈ A , then

µ0

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ0(Ai).

Then there exists a unique measure extending µ0 to the σ-algebra generated by A .

In our context, the parent set is [0, 1]× [0, 1], and

A = {finite unions of half-open dyadic squares of the same order},

i.e. sets like [x−1
2k

, x
2k
)× [y−1

2k
, y
2k
). Then we can define µ0 to be the sum of the corresponding

entries in Ak. Applying the theorem gives us the desired measure, and we will prove the
permuton properties next time.
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